Synthesis of α -Halo β , γ -Unsaturated Esters From γ -Phenylseleno α , β -Unsaturated Esters

Jean-François Duclos, Francis Outurquin and Claude Paulmier*

Laboratoire de Synthèse Hétéroorganique (I.R.C.O.F.), Université de Rouen, UFR Sciences, F-76821 Mont Saint Aignan, France

Abstract: γ -Phenylseleno α , β -unsaturated esters, prepared from α -phenylseleno aldehydes by Horner-Emmons reaction and treated with bromine or sulfuryl chloride, form adducts whose decomposition leads to α -halo β , γ -unsaturated esters in fair to good yields.

Some years ago, we prepared, α -hydroxy β , γ -unsaturated esters 4 by a [2,3]-sigmatropic rearrangement¹ of selenoxides derived from the γ -phenylseleno α , β -unsaturated esters 2.² We now report a method for the synthesis of α -halo β , γ -unsaturated esters 5 and 6 simply by treating esters 2 with bromine and sulfuryl chloride respectively (Scheme).

A literature survey shown that no general and efficient method exists today for the synthesis of this type of compounds. Alkyl 2-halo 3-butenoates have been prepared from alkyl 2-hydroxy 3-butenoates ³ or by deconjugation of ethyl 2-halo 3-methyl cinnamates with LDA in THF.⁴ Other similar deconjugations have been proposed.^{5,6} More recently, ethyl 2-chloro 2,3-disubstituted 3-butenoates have been prepared by calcium hypochlorite/acetic acid treatment of ethyl 2,3-disubstituted 2-butenoates.⁷

The unsaturated esters 2 were obtained from α -phenylseleno aldehydes 1 ($R^3 = H$),8 phenylseleno propanone 1 (R^1 , $R^2 = H$, $R^3 = Me$) and 2-phenylselenocyclohexanone ($R^1 = H$, $R^2 - R^3 = -(CH_2)_4$ -)9 by Emmons-Horner olefination using triethyl phosphonoacetate² or triethyl 2-phosphonopropionate and nBuLi (Table). Methyl 4-phenylseleno 2-butenoate 3 (R^1 , R^2 , R^3 , $R^4 = H$, R = Me) was prepared as described. ¹⁰

Halogenating agents and alkyl phenylselenide give adducts whose decomposition forms alkyl halide and benzeneselenenyl halide. ¹¹ While the bromination of α -phenylseleno aldehydes gives the α -bromoaldehydes ¹², the chlorination of α -phenylseleno-aldehydes ¹² and -ketones ¹³ leads to the formation of α -chloro α -phenylseleno carbonyl compounds.

With esters 2, the bromo and chloro adducts cannot be isolated. The decomposition, at room temperature, in the presence of ethyl vinylether, allows the synthesis of α -halo esters 5 and 6 (Table) except in the cases of two γ -substituents. 2e and 2f gave directly the γ -bromo esters 7e and 7f respectively¹⁴. We observed also the formation of γ -bromo esters 7 without addition of the PhSeX trap and the isomerisation $5 \rightarrow 7$ in the presence of a catalytic amount of diphenyldiselenide.

The difference in the isomeric nature of the products, when the reaction is achieved in the presence of ethyl vinylether, seems to indicate that the α -attack of the halide ion operates in all cases. Without the trap, the benzeneselenenyl halide formed adds to the double bond of 5, the PhSe group fixed on the β -carbon, allowing the formation of the conjugated unsaturated esters 7 by a second loss of PhSeX. The mechanism of the isomerisation $5 \rightarrow 7$, in the reaction conditions, is under investigation. γ -Bromo α , β -unsaturated esters such as 7 are easily prepared by N-bromosuccinimide treatment of the corresponding esters. ¹⁵

The bromine treatment of ester 3 in hexane (- 40° C) furnishes a solid adduct 8 stable at room temperature. ¹⁶ The chloro adduct 9 and iodo adduct 10 were obtained using SO_2Cl_2 and I_2 respectively. ¹⁶ At more elevated temperatures, these adducts decompose. ¹⁷ Even in the presence of ethyl vinylether, a trap for benzeneselenenyl halides, mixtures are formed. They contain the corresponding γ -halo ester 11, 12 or 13. ¹⁷

Due to the lack of preparative methods, the synthetic applications of α -halo esters 5 and 6 have not been extensively studied. We note: the thermal allylic rearrangement into γ -bromo esters, 3 the base-catalyzed isomerisation to α -chloro α , β -unsaturated esters, 7. 18. 19 the preparation of alkyl 2-amino 3-butenoates 4 and of vinylcyclopropanes. 20 Reactions with sulfur and nitrogen nucleophiles give α - or γ -substitution products. 7 The action of carbanionic species leads to substituted cyclopentenone and γ -alkyl α , β -unsaturated esters. 21, 22

Work is in progress to extend this reaction to structures containing other functional groups and substituents, to study some reactions concerning the chemical properties of α -halo β , γ -unsaturated esters 5 and 6.

 $\label{eq:continuous} \textbf{Table} $$\gamma$-Phenylseleno α,β-Unsaturated Esters 2 (R = Et) and α-Halo β,γ-Unsaturated Esters 5 and 6.$

Substrates 2 (R = Et)						Products 5, 6	
N°	R ¹	R ²	R ³	R ⁴	Yield %	N°	Yield %
2a	Me	Н	Н	Н	802	5a	57
2b	Et	Н	Н	Н	902	5b	87
2c	iPr	Н	Н	Н	85	5c	89
		-				6c	52
2d	-CH(Ph Me	Н	Н	Н	60 (a)	5d 6d	75 54
2e	-(CH ₂) ₅ -		Н	Н	80	5e	0
2f	Et	Me	Н	н	78	5f	0
2g	н	Н	Me	Н	81 ² (b)	5g	28
2h	н	-(CH ₂) ₄ -		Н	70 ² (b)	5h	79
2i	Me	Н	Н	Me	82 (b)	5i	70
2j	iPr	Н	Н	Me	61 (b)	5j	54

a) mixture of diastereoisomers (1/1) b) all esters were assumed to be E except for : 2g E/Z : 3/1;

2h E/Z: 7/3; 2i E/Z: 1/1; 2j E/Z: 85/15.

REFERENCES AND NOTES

- 1. Sharpless, K.B.; Lauer, R.F. J. Am. Chem. Soc., 1972, 94, 7154-5.
- 2. Lerouge, P.; Paulmier, C. Bull. Soc. Chim. Fr., 1985, 1225-9.
- 3. Rambaud, R. Bull. Soc. Chim. Fr., 1934, 1342-55.
- 4. Chari, R.V.J.; Wemple, J. Tetrahedron Lett., 1979, 111-4.
- (a) Mc Donald, I.A.; Lacoste, J.M.; Bey, P.; Wagner, J.; Zreika, M.; Palfreymann, M.G. J. Am. Chem. Soc., 1984, 106, 3354-6;
 (b) Mc Donald, I.A.; Palfreymann, M.G.; Jung, M.; Bey, P. Tetrahedron Lett., 1985, 26, 4091-2.
- 6. Duhamel, L.; Peschard, O.; Plé, G. Tetrahedron Lett., 1991, 32, 4695-8.
- 7. Mathew, J.; Alink, B. J. Org. Chem., 1990, 55, 3880-6.
- 8. Paulmier, C.; Lerouge, P. Tetrahedron Lett., 1982, 23, 1557-60.
- 9. (a) Engman, L. Tetrahedron Lett., 1985, 26, 6385-8; (b) Petragnani, N.; Comasseto, J.V.; Rodrigues, R.; Brocksom, T.J. J. Organomet. Chem., 1977, 124, 1-12.
- 10. Fitzner, J.N.; Pratt, D.V.; Hopkins, P.B. Tetrahedron Lett., 1985, 26, 1959-62.
- 11. (a) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis, Pergamon Press, 1986, 102-4; (b) Morella, A.M.; Ward, A.D. Tetrahedron Lett., 1984, 25, 1997-200; Ibid., 1985, 26, 2899-

- 900; (c) Tiecco, M.; Testaferri, L.; Tingoli, M.; Chianelli, D.; Bartoli, D. Tetrahedron, 1988, 44, 2261-72.
- 12. Paulmier, C.; Outurquin, F.; Plaquevent, J.C. Tetrahedron Lett., 1988, 29, 5893-6.
- 13. Engman, L.; Persson, J.; Tilstam, U. Tetrahedron Lett., 1989, 30, 2665-8.
- 14. The adducts formed in hexane at 40°C decompose at room temperature (10 min). The solution is added to methanol containing triethylamine and ethylvinylether in excess. After concentration, without heating, the α-haloesters 5 and 6 are purified by silicagel chromatography (elution hexane/CH₂Cl₂ 9/1) and isolated as oils. ¹H-NMR for: 5c: 4.74 (m, Hα), 5.79 (m, Hβ, Hγ); 6c: 4.76 (m, Hα), 5.74 (m, Hβ), 6.05 (m, Hγ). J (Hz): 8.3 (αβ), 5.8 (γδ), 15.4 (βγ); 5d: 4.78 (m, Hα), 5.93 (m, Hβ, Hγ); 6d: 4.72 (m, Hα), 5.64 (m, Hβ), 5.85 (dd, Hγ). J (Hz): 7.8 (αβ), 5.0 (γδ), 15.1 (βγ), 0.8 (βδ). Without a trap of benzeneselenenyl bromide, the decomposition of bromo adducts gives the γ-bromo esters 7. The compounds 2e and 2f give directly the γ-bromo esters 7e and 7f respectively which are also purified by chromatography. 7a: ²⁴ 74 %, 7b: ²⁴ 60 %, 7c: 64 %; ¹H-NMR (CDCl₃) 5.93 (dd, Hα), 7.00 (dd, Hβ), 4.42 (dd, Hγ), 1.96 (m, Hδ). J_{αβ}=15.1 Hz, J_{αγ}=0.7 Hz, J_{βγ}=9.5 Hz, J_{γδ}=5.5 Hz. The crude product contains 10 % of 5c. 7e: 60 %; ¹H-NMR (CDCl₃) 5.89 (d, Hα), 7.13 (d, Hβ). J_{αβ}=15.6 Hz. 7f: 63 %; ¹H-NMR (CDCl₃) 5.89 (d, Hα), 7.08 (d, Hβ). J_{αβ}=15.6 Hz.
- 15. Moppett, C.E.; Sutherland, J.K. J. Chem. Soc. (C), 1968, 3040-2.
- 16. ¹H-NMR spectra of adducts (CDCl₃) **8:** 6.54 (d, H α), 7.30 (dt, H β), 4.91 (d, H γ). $J_{\alpha\beta}$ =15.6 Hz, $J_{\beta\gamma}$ =8.1 Hz; **9:** 6.44 (d, H α), 7.34 (dt, H β), 4.97 (d, H γ). $J_{\alpha\beta}$ =15.5 Hz, $J_{\beta\gamma}$ =8.1 Hz; **10:** 5.63 (d, H α), 6.95 (dt, H β), 3.66 (d, H γ). $J_{\alpha\beta}$ =15.4 Hz, $J_{\alpha\gamma}$ =8.1 Hz.
- 17. Adducts **8-10** were decomposed in CHCl₃ at reflux. The residue of each reaction contains the γ -haloesters. ¹H-NMR (CDCl₃) **11**²³: 6.02 (d, H α), 7.02 (dt, H β), 4.01 (d, H γ). $J_{\alpha\beta}$ =15.6 Hz, $J_{\alpha\gamma}$ =1.3 Hz, $J_{\beta\gamma}$ =6.7 Hz; **12**: 5.98 (d, H α), 7.96 (dt, H β), 4.10 (d, H γ). $J_{\alpha\beta}$ =15.6 Hz, $J_{\alpha\gamma}$ =1.6 Hz, $J_{\beta\gamma}$ =5.4 Hz; **13**: 5.93 (d, H α), 7.06 (dt, H β), 3.93 (d, H γ). $J_{\alpha\beta}$ =15.6 Hz, $J_{\alpha\gamma}$ =0.8 Hz, $J_{\beta\gamma}$ =8.1 Hz.
- 18. Vessière, R. Bull. Soc. Chim. Fr., 1959, 1645-50.
- 19. Mialhe, Y.; Vessière, R. Bull. Soc. Chim. Fr., 1968, 4181-91; Ibid, 1969, 3687-92.
- 20. Ducher, S.; Sudre, J.P.; Vessière, R. C. R. Acad. Sc., 1973, 277C, 575-8; Ibid., 1974, 278C, 537-9.
- (a) Mathew, J.; Alink, B. J. Chem. Soc., Chem. Commun., 1990, 684-6; (b) Mathew, J. J. Org. Chem., 1990, 55, 5294-7.
- 22. Mathew, J. J. Org. Chem., 1992, 57, 2753-5.
- 23. Loffler, A.; Norris, F.; Taub, W.; Svanholt, K.L.; Dreiding, A.S., Helv. Chim. Acta., 1970, 53, 403-417.
- 24. Kraus, J.L.; Sturtz, G. Bull. Soc. Chim. Fr., 1974, (5-6, Pt. 2), 943-52.

(Received in France 1 July 1993; accepted 16 September 1993)